ApkDownload

Dijkstra's Shortest Path Calc APK

نسخه کنونی 1.2 for Windows
به روز شده 2015-05-16

اطلاعات

نسخه 1.2 (#8)

به روز شده 2015-05-16

اندازه پرونده APK 1 MB

نسخه Android مورد نیاز Android 3.0+ (Honeycomb)

برنامه نویس IDAARAH

رده آموزش (برنامه)

ID dijkstra.tqrapps.com.dijkstra

یادداشت های توسعه دهنده The simplest and the fastest way to calculate shortest paths between nodes

تصویر نماگرفت

برای دیدن اندازه اصلی روی عکس کلیک کنید

قابلیت های جدید

تازه چه خبر در Dijkstra's Shortest Path Calc 1.2 است

[1.2] Bug Fixes and Improvements

شرح

Instructions:

1. Set the Total Number of Nodes
2. Add information about the distance from one node to another and Click. If you make a mistake, click the row to delete it.
3. Make sure the and "From" values are less than the number of Nodes.
4. Set the starting Node. Must be between 1 and Number of Nodes. Default is 0
5. Click "Calculate" to see the Distance from Node 1 to the rest of the Nodes!
6. Rate App to Support Developer

You can request any additional features.

Dijkstra's algorithm, conceived by computer scientist Edsger Dijkstra in 1956 and published in 1959,[1][2] is an algorithm for finding the shortest paths between nodes in graph (which may represent, for example, road networks). The algorithm exists in many variants; Dijkstra's original variant found the shortest path between two nodes,[2] but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest path tree.

1 function Dijkstra(Graph, source):
2
3 dist[source] ← 0 // Distance from source to source
4 prev[source] ← undefined // Previous node in optimal path initialization
5
6 for each vertex v in Graph: // Initialization
7 if v ≠ source // Where v has not yet been removed from Q (unvisited nodes)
8 dist[v] ← infinity // Unknown distance function from source to v
9 prev[v] ← undefined // Previous node in optimal path from source
10 end if
11 add v to Q // All nodes initially in Q (unvisited nodes)
12 end for
13
14 while Q is not empty:
15 u ← vertex in Q with min dist[u] // Source node in first case
16 remove u from Q
17
18 for each neighbor v of u: // where v is still in Q.
19 alt ← dist[u] + length(u, v)
20 if alt < dist[v]: // A shorter path to v has been found
21 dist[v] ← alt
22 prev[v] ← u
23 end if
24 end for
25 end while
26
27 return dist[], prev[]
28
29 end function

Source: Wikipedia

رأی و نظرات

رتبه: 5.0 / 5 · Less than 100 رأی

(*) مورد نیاز است

نسخه های قبلی

Dijkstra's Shortest Path Calc 1.2 APK (#8, 1 MB)